Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình

Mã ID: 5605

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023.

Mua sách tại những trang thương mại điện tử uy tín

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023.

Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình:
+ Cho dãy số (xn) được xác định như sau, trong đó a là một số thực dương cho trước. a) Chứng minh rằng dãy (xn) có giới hạn hữu hạn. b) Giả sử lim xn = c. Tìm số thực a để dãy (xn) xác định bởi yn có giới hạn hữu hạn khác 0.
+ Cho tam giác ABC nhọn, không cần nội tiếp đường tròn (O) có các đường cao AD, BE, CF đồng quy tại H. Gọi T là giao điểm thứ hai của đường thẳng CH với đường tròn (O); I là giao điểm của AT với BC; J là giao điểm của AD với EF. Gọi M, N lần lượt là trung điểm của các đoạn HC, HE. Lấy điểm P trên EF sao cho MP song song với DE, điểm Q trên BJ sao cho EQ song song với NP. a) Chứng minh rằng ba điểm I, E, Q thẳng hàng. b) Gọi X là giao điểm của BH với CO, Y là giao điểm của CH với BO, Z là trực tâm tam giác DEF. Chứng minh rằng OZ chia đôi đoạn XY.
+ Cho tập hợp S = {1; 2; 3; …; 2048}. a) Chứng minh khẳng định sau: “Với mọi tập con X của tập S có số phần tử bằng 15, luôn tồn tại hai tập con khác rỗng rời nhau A, B của tập X sao cho i = j”. Khẳng định này còn đúng không khi số phần tử của tập X bằng 12? b) Tập con Y khác rỗng của S thoả mãn điều kiện: với mọi y thuộc Y thì 15y không thuộc Y. Tìm số phần tử lớn nhất có thể của tập Y.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam

Tài liệu được xem nhiều nhất

Đề KSCL Toán thi vào 10 năm 2023 – 2024 trường THPT Quảng Xương 4 – Thanh Hoá
Đề thi thử tốt nghiệp THPT 2024 môn Toán có đáp án - Đề 3
Đề thi học sinh giỏi Văn 12 năm 2024 có đáp án - Đề 3

Đề thi học sinh giỏi Văn 12 năm 2024 có đáp án - Đề 3

571 View

Đề thi thử tốt nghiệp THPT môn Vật Lí 2024 có đáp án - Đề 3
Đề thi giữa học kỳ 1 Toán 11 Cánh diều giải chi tiết-Đề 2
Đề cương giữa kỳ 1 Toán 11 năm 2023 – 2024 trường Bùi Thị Xuân – Lâm Đồng
Đề cuối kì 2 Toán 10 năm 2022 – 2023 trường THPT Ngũ Hành Sơn – Đà Nẵng
Đề thi thử THPT quốc gia môn Toán năm 2024 có lời giải - Đề 9
Tuyển tập 39 đề thi chọn học sinh giỏi môn Toán 10 có lời giải
Chuyên đề trắc nghiệm nguyên hàm từng phần

Chuyên đề trắc nghiệm nguyên hàm từng phần

375 View

Chuyên đề kim loại kiềm-kiềm thổ-nhôm Hóa 12

Chuyên đề kim loại kiềm-kiềm thổ-nhôm Hóa 12

641 View

Đề thi thử TN THPT 2024 môn Hóa có lời giải - Đề 6

Đề thi thử TN THPT 2024 môn Hóa có lời giải - Đề 6

391 View