Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình

Mã ID: 5605

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023.

Mua sách tại những trang thương mại điện tử uy tín

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 06/10/2023 và 07/10/2023.

Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình:
+ Cho dãy số (xn) được xác định như sau, trong đó a là một số thực dương cho trước. a) Chứng minh rằng dãy (xn) có giới hạn hữu hạn. b) Giả sử lim xn = c. Tìm số thực a để dãy (xn) xác định bởi yn có giới hạn hữu hạn khác 0.
+ Cho tam giác ABC nhọn, không cần nội tiếp đường tròn (O) có các đường cao AD, BE, CF đồng quy tại H. Gọi T là giao điểm thứ hai của đường thẳng CH với đường tròn (O); I là giao điểm của AT với BC; J là giao điểm của AD với EF. Gọi M, N lần lượt là trung điểm của các đoạn HC, HE. Lấy điểm P trên EF sao cho MP song song với DE, điểm Q trên BJ sao cho EQ song song với NP. a) Chứng minh rằng ba điểm I, E, Q thẳng hàng. b) Gọi X là giao điểm của BH với CO, Y là giao điểm của CH với BO, Z là trực tâm tam giác DEF. Chứng minh rằng OZ chia đôi đoạn XY.
+ Cho tập hợp S = {1; 2; 3; …; 2048}. a) Chứng minh khẳng định sau: “Với mọi tập con X của tập S có số phần tử bằng 15, luôn tồn tại hai tập con khác rỗng rời nhau A, B của tập X sao cho i = j”. Khẳng định này còn đúng không khi số phần tử của tập X bằng 12? b) Tập con Y khác rỗng của S thoả mãn điều kiện: với mọi y thuộc Y thì 15y không thuộc Y. Tìm số phần tử lớn nhất có thể của tập Y.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương

Tài liệu được xem nhiều nhất

Đề cương giữa kì 1 Toán 12 năm 2023 – 2024 trường THPT Trương Vĩnh Ký – Bến Tre
Đề thi thử THPT Quốc gia 2023 Ngữ văn phát triển từ đề minh hoạ - Đề 2
Đề thi giữa học kỳ 2 Lý 12 năm 2023-2024 có đáp án (Đề 3)
Đề giữa học kì 1 Toán 9 năm 2023 – 2024 trường THCS Yên Phong – Nam Định
Ngân hàng câu hỏi số phức: Bài toán tìm số phức – Lê Bá Bảo
Đề Thi Học Sinh Giỏi Toán Lớp 12 Năm 2023 - 2024 Có đáp án - Đề 10
Các bài giảng trọng tâm theo chương trình chuẩn môn Toán 12
Đề thi thử chính thức THPT Quốc gia 2023 môn Toán Sở GD&ĐT Thanh Hóa lần 1
Hệ thống bài tập trắc nghiệm đường thẳng và đường tròn
Chuyên đề khảo sát hàm số – Tô Quốc An (quyển 1)

Chuyên đề khảo sát hàm số – Tô Quốc An (quyển 1)

650 View

Đề kiểm tra Toán 9 đầu năm 2023 – 2024 phòng GD&ĐT Kim Sơn – Ninh Bình
Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 CTST

Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 CTST

2021 View