Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn

Mã ID: 5606

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn:
+ Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất “Với bất kì hai số thực x,y luôn có: |y2 – P(x)| =< 2|x| khi và chỉ khi |x2 – P(y)| =< 2|y|”. Ta gọi S là tập tất cả các đa thức thỏa mãn điều kiện ở trên. a) Hãy chứng minh rằng họ đa thức P(x) với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S. b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn.
+ Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng. a) Chứng minh rằng G, L, K thẳng hàng. b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh (PQR) tiếp xúc với (I).
+ Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh

Tài liệu được xem nhiều nhất

Đề giữa kì 1 Toán 9 năm 2023 – 2024 trường TH&THCS Đại Tân – Quảng Nam
Đề giữa kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Mạc Đĩnh Chi – Hải Phòng
Toàn tập số phức cơ bản

Toàn tập số phức cơ bản

293 View

Đề giữa học kì 1 Toán 9 năm 2023 – 2024 trường Lương Thế Vinh – Hà Nội
Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 9)

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 9)

670 View

Đề thi thử tốt nghiệp THPT Lịch Sử theo đề minh họa 2024 - Đề 6
Đề cương giữa kỳ 1 Toán 11 năm 2023 – 2024 trường Bùi Thị Xuân – Lâm Đồng
Bài giảng phương pháp tọa độ trong không gian – Nguyễn Hoàng Việt
8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

8 chủ đề luyện thi tuyển sinh vào lớp 10 môn Toán

405 View

Đề cuối học kì 2 Toán 10 năm 2022 – 2023 trường THPT Trần Phú – Hà Nội
20 đề thi học kỳ 1 Ngữ văn 12 có đáp án

20 đề thi học kỳ 1 Ngữ văn 12 có đáp án

845 View

Tài liệu ôn thi tốt nghiệp THPT môn Sinh học năm 2024

Tài liệu ôn thi tốt nghiệp THPT môn Sinh học năm 2024

2209 View