Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn

Mã ID: 5606

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn:
+ Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất “Với bất kì hai số thực x,y luôn có: |y2 – P(x)| =< 2|x| khi và chỉ khi |x2 – P(y)| =< 2|y|”. Ta gọi S là tập tất cả các đa thức thỏa mãn điều kiện ở trên. a) Hãy chứng minh rằng họ đa thức P(x) với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S. b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn.
+ Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng. a) Chứng minh rằng G, L, K thẳng hàng. b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh (PQR) tiếp xúc với (I).
+ Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau

Tài liệu được xem nhiều nhất

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 10)

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 10)

702 View

Đề cương học kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Bắc Thăng Long – Hà Nội
Trắc nghiệm về Sóng dừng có lời giải chi tiết

Trắc nghiệm về Sóng dừng có lời giải chi tiết

417 View

Đề học kì 2 Toán 12 năm 2022 – 2023 trường THPT Lương Thế Vinh – Quảng Ngãi
Chuyên đề Dao động và sóng điện từ Vật lí 12 mức vận dụng
Đề giữa học kì 2 Toán 10 năm 2022 – 2023 trường Hà Long – Long An
Đề thi thử TN THPT năm học 2023-2024 môn Vật Lí - Đề 4

Đề thi thử TN THPT năm học 2023-2024 môn Vật Lí - Đề 4

491 View

10 đề ôn tập kiểm tra giữa học kì 2 môn Toán 12

10 đề ôn tập kiểm tra giữa học kì 2 môn Toán 12

358 View

Đề ôn thi TN THPT 2024 Tiếng Anh có lời giải chi tiết-Đề 5
Giải bài toán nguyên hàm–tích phân dưới sự hỗ trợ của máy tính Casio FX-580VNX
Xét tính đơn điệu của hàm số dựa vào công thức

Xét tính đơn điệu của hàm số dựa vào công thức

352 View

Đề giữa kì 2 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Gia Thiều – Hà Nội