Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc

Mã ID: 5571

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Mua sách tại những trang thương mại điện tử uy tín

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Trích dẫn Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc:
+ Cho n là số nguyên dương lớn hơn 1. Kí hiệu G(n) là ước nguyên tố lớn nhất của n. a) Chứng minh rằng nếu n + 1 là lũy thừa của 2 và n chia hết cho 11 thì G(n) > 11. b) Hai số nguyên tố phân biệt p, q được gọi là xa lạ nếu không tồn tại số nguyên dương n lớn hơn 1 để hai tập hợp {p;q} và {G(n);G(n + 1)} trùng nhau. Chứng minh rằng nếu p < q là hai số nguyên tố lẻ sao cho ordp2 = ordq2 thì 2 và p là hai số xa lạ và có vô hạn cặp số nguyên tố (p;9) sao cho p < q và hai số p và q là xa lạ.
+ Cho tam giác ABC nhọn và cân tại đỉnh A. Gọi D và E lần lượt là trung điểm của CB và CA, M là trung điểm của DE. Đường tròn ngoại tiếp tam giác AEM cắt cạnh AB tại điểm N. Tiếp tuyến tại M và N của đường tròn ngoại tiếp tam giác AEM cắt nhau tại P. a) Đường thẳng AM cắt tiếp tuyến tại E của đường tròn ngoại tiếp tam giác AEM ở điểm Q. Chứng minh rằng P, D, Q thẳng hàng. b) Chứng minh rằng điểm P nằm trên đường thẳng BC.
+ Cho số nguyên dương n > 1, số nguyên dương k được gọi là n-good nếu với mọi cách tô màu mỗi số nguyên dương 1; 2; …; k bởi một trong hai màu xanh hoặc đỏ thì ta luôn chọn được n số cùng màu (không nhất thiết phân biệt) sao cho tổng của n số này cũng nằm trong tập hợp {1; 2; …; k} và cùng màu với n số vừa chọn. a) Tìm số 2-good nhỏ nhất. b) Tìm số 2024-good nhỏ nhất.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc

Tài liệu được xem nhiều nhất

Đề thi thử THPT QG môn Sinh 2024 có lời giải - Đề 1

Đề thi thử THPT QG môn Sinh 2024 có lời giải - Đề 1

462 View

Đề tham khảo cuối kì 1 Toán 11 KNTTVCS năm 2023 – 2024 sở GD&ĐT Ninh Bình
Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 CTST

Chuyên đề hàm số mũ và hàm số lôgarit Toán 11 CTST

2026 View

Đề thi HK2 Ngữ Văn 12 năm học 2023-2024 có đáp án - Đề 7
test drive

test drive

247 View

100 câu trắc nghiệm Địa lí công nghiệp theo từng mức độ
Đề ôn thi HK1 Toán 12 có đáp án năm 2023-2024-Đề 1

Đề ôn thi HK1 Toán 12 có đáp án năm 2023-2024-Đề 1

483 View

Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương
Bải tập Trắc nghiệm GTLN vÀ GTNN của hàm số

Bải tập Trắc nghiệm GTLN vÀ GTNN của hàm số

391 View

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1)

Các bài toán chọn lọc trong hệ tọa độ Oxyz (phần 1)

384 View

Chuyên Đề Lý Thuyết Vật Lý Lớp 12 Có Đáp Án

Chuyên Đề Lý Thuyết Vật Lý Lớp 12 Có Đáp Án

606 View

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre