Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc

Mã ID: 5571

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Mua sách tại những trang thương mại điện tử uy tín

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Trích dẫn Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc:
+ Cho n là số nguyên dương lớn hơn 1. Kí hiệu G(n) là ước nguyên tố lớn nhất của n. a) Chứng minh rằng nếu n + 1 là lũy thừa của 2 và n chia hết cho 11 thì G(n) > 11. b) Hai số nguyên tố phân biệt p, q được gọi là xa lạ nếu không tồn tại số nguyên dương n lớn hơn 1 để hai tập hợp {p;q} và {G(n);G(n + 1)} trùng nhau. Chứng minh rằng nếu p < q là hai số nguyên tố lẻ sao cho ordp2 = ordq2 thì 2 và p là hai số xa lạ và có vô hạn cặp số nguyên tố (p;9) sao cho p < q và hai số p và q là xa lạ.
+ Cho tam giác ABC nhọn và cân tại đỉnh A. Gọi D và E lần lượt là trung điểm của CB và CA, M là trung điểm của DE. Đường tròn ngoại tiếp tam giác AEM cắt cạnh AB tại điểm N. Tiếp tuyến tại M và N của đường tròn ngoại tiếp tam giác AEM cắt nhau tại P. a) Đường thẳng AM cắt tiếp tuyến tại E của đường tròn ngoại tiếp tam giác AEM ở điểm Q. Chứng minh rằng P, D, Q thẳng hàng. b) Chứng minh rằng điểm P nằm trên đường thẳng BC.
+ Cho số nguyên dương n > 1, số nguyên dương k được gọi là n-good nếu với mọi cách tô màu mỗi số nguyên dương 1; 2; …; k bởi một trong hai màu xanh hoặc đỏ thì ta luôn chọn được n số cùng màu (không nhất thiết phân biệt) sao cho tổng của n số này cũng nằm trong tập hợp {1; 2; …; k} và cùng màu với n số vừa chọn. a) Tìm số 2-good nhỏ nhất. b) Tìm số 2024-good nhỏ nhất.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai

Tài liệu được xem nhiều nhất

Đề thi học sinh giỏi môn Địa lí 12 có đáp án - Đề 4

Đề thi học sinh giỏi môn Địa lí 12 có đáp án - Đề 4

323 View

Chuyên đề ngữ pháp Tiếng Anh - Chuyên Đề 6 Động Từ Khuyết Thiếu
Đề cuối kì 2 Toán 12 năm 2022 – 2023 trường THPT Lương Ngọc Quyến – Thái Nguyên
150 Câu hỏi trắc nghiệm chương VII - Hạt nhân nguyên tử

150 Câu hỏi trắc nghiệm chương VII - Hạt nhân nguyên tử

385 View

Đề cương ôn thi Ngữ Văn 12 HK2 năm học 2023-2024

Đề cương ôn thi Ngữ Văn 12 HK2 năm học 2023-2024

420 View

Đề thi thử Tiếng Anh tốt nghiệp trung học phổ thông bộ Giáo dục 2023
Các dạng toán về tia X có lời giải chi tiết

Các dạng toán về tia X có lời giải chi tiết

395 View

Đề cuối kì 2 Toán 12 năm 2022 – 2023 trường THPT Đại Đồng – Hòa Bình
Đề cuối học kì 2 Toán 10 năm 2022 – 2023 trường THPT Kiến Thụy – Hải Phòng
Vấn đề chuyển dịch cơ cấu kinh tế theo ngành ở đồng bằng Sông Hồng
Đề thi thử ĐGNL môn Toán xét tuyển Đại học 2023 trường ĐHSP Hà Nội mới nhất
Chuyên đề Phát triển kinh tế-xã hội ở Bắc Trung Bộ ôn thi TNTHPT