Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc

Mã ID: 5571

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Mua sách tại những trang thương mại điện tử uy tín

Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT chuyên năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc.

Trích dẫn Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc:
+ Cho n là số nguyên dương lớn hơn 1. Kí hiệu G(n) là ước nguyên tố lớn nhất của n. a) Chứng minh rằng nếu n + 1 là lũy thừa của 2 và n chia hết cho 11 thì G(n) > 11. b) Hai số nguyên tố phân biệt p, q được gọi là xa lạ nếu không tồn tại số nguyên dương n lớn hơn 1 để hai tập hợp {p;q} và {G(n);G(n + 1)} trùng nhau. Chứng minh rằng nếu p < q là hai số nguyên tố lẻ sao cho ordp2 = ordq2 thì 2 và p là hai số xa lạ và có vô hạn cặp số nguyên tố (p;9) sao cho p < q và hai số p và q là xa lạ.
+ Cho tam giác ABC nhọn và cân tại đỉnh A. Gọi D và E lần lượt là trung điểm của CB và CA, M là trung điểm của DE. Đường tròn ngoại tiếp tam giác AEM cắt cạnh AB tại điểm N. Tiếp tuyến tại M và N của đường tròn ngoại tiếp tam giác AEM cắt nhau tại P. a) Đường thẳng AM cắt tiếp tuyến tại E của đường tròn ngoại tiếp tam giác AEM ở điểm Q. Chứng minh rằng P, D, Q thẳng hàng. b) Chứng minh rằng điểm P nằm trên đường thẳng BC.
+ Cho số nguyên dương n > 1, số nguyên dương k được gọi là n-good nếu với mọi cách tô màu mỗi số nguyên dương 1; 2; …; k bởi một trong hai màu xanh hoặc đỏ thì ta luôn chọn được n số cùng màu (không nhất thiết phân biệt) sao cho tổng của n số này cũng nằm trong tập hợp {1; 2; …; k} và cùng màu với n số vừa chọn. a) Tìm số 2-good nhỏ nhất. b) Tìm số 2024-good nhỏ nhất.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An

Tài liệu được xem nhiều nhất

Phương pháp giải toán cắt ghép lò xo có lời giải

Phương pháp giải toán cắt ghép lò xo có lời giải

427 View

Đề thi HK1 môn Lịch Sử 12 NH 2023-2024 có đáp án - Đề 1

Đề thi HK1 môn Lịch Sử 12 NH 2023-2024 có đáp án - Đề 1

408 View

Đề thi thử THPT quốc gia môn Toán năm 2024 có lời giải - Đề 24
Đề kiểm tra giữa học kỳ 2 môn Sử 12 có đáp án - Đề 1
Chuyên đề Địa lí dân cư ôn thi tốt nghiệp THPT có đáp án
Tổng hợp các lý thuyết sinh học lớp 12 cả năm học

Tổng hợp các lý thuyết sinh học lớp 12 cả năm học

458 View

Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Lương Thế Vinh – Quảng Nam
Đề khảo sát Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa
Chủ đề tiếp tuyến và sự tiếp xúc của đồ thị hàm số
Đề cuối kì 2 Toán 10 năm 2022 – 2023 trường THPT Mạc Đĩnh Chi – Gia Lai
Chuyên đề Este-Lipit Hóa 12

Chuyên đề Este-Lipit Hóa 12

391 View

Đề thi thử Toán vào 10 năm 2023 – 2024 phòng GD&ĐT Thạch Hà – Hà Tĩnh