Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn

Mã ID: 5675

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn:
+ Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất “Với bất kì hai số thực x,y luôn có: |y2 – P(x)| =< 2|x| khi và chỉ khi |x2 – P(y)| =< 2|y|”. Ta gọi S là tập tất cả các đa thức thỏa mãn điều kiện ở trên. a) Hãy chứng minh rằng họ đa thức P(x) với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S. b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn.
+ Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng. a) Chứng minh rằng G, L, K thẳng hàng. b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh (PQR) tiếp xúc với (I).
+ Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương

Tài liệu được xem nhiều nhất

80 câu trắc nghiệm phương trình mặt cầu có lời giải

80 câu trắc nghiệm phương trình mặt cầu có lời giải

485 View

Bài tập đọc hiểu Tiếng Anh luyện thi thpt Quốc gia có đáp án-tập 2
Đề thi thử Toán vào lớp 10 lần 1 năm 2023 – 2024 trường Lương Thế Vinh – Hà Nội
Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 25)

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 25)

510 View

Chuyên đề trắc nghiệm công thức từng phần tính tích phân
Tài liệu luyện thi học sinh giỏi Ngữ văn THPT-tập 2

Tài liệu luyện thi học sinh giỏi Ngữ văn THPT-tập 2

503 View

Chuyên đề ngữ pháp Tiếng Anh - Chuyên đề 9 danh động từ và động từ nguyên mẫu
Đề ôn thi tốt nghiệp THPT 2024 môn Lý phát triển từ đề minh họa-Đề 6
Bài toán lãi suất và tăng trưởng

Bài toán lãi suất và tăng trưởng

459 View

Bài tập trắc nghiệm hình trụ khối trụ có lời giải

Bài tập trắc nghiệm hình trụ khối trụ có lời giải

536 View

Trắc nghiệm di truyền học quần thể có lời giải

Trắc nghiệm di truyền học quần thể có lời giải

578 View

Đề cương ôn tập giữa học kì 1 môn Toán 9 năm học 2023 – 2024