Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn

Mã ID: 5675

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển của tỉnh tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Lạng Sơn.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn:
+ Xét các đa thức P(x) với hệ số thực thỏa mãn tính chất “Với bất kì hai số thực x,y luôn có: |y2 – P(x)| =< 2|x| khi và chỉ khi |x2 – P(y)| =< 2|y|”. Ta gọi S là tập tất cả các đa thức thỏa mãn điều kiện ở trên. a) Hãy chứng minh rằng họ đa thức P(x) với C > 0 và đa thức Q(x) = x2 + 1 cùng thuộc vào tập S. b) Giả sử rằng P(x) thuộc S và P(0) ≥ 0. Chứng minh rằng P(x) là hàm số chẵn.
+ Cho tam giác ABC có đường tròn nội tiếp tâm I tiếp xúc với BC, CA, AB lần lượt tại D, E, F. Giả sử G, L, K lần lượt là giao điểm của các đường thẳng EF, FD, DE với BC, CA, AB tương ứng. a) Chứng minh rằng G, L, K thẳng hàng. b) Lấy các điểm P, Q lần lượt đối xứng với D qua B, C tương ứng. Đường tròn bàng tiếp tâm J ứng với đỉnh A của tam giác ABC tiếp xúc với BC tại N; gọi R là điểm đối xứng với N qua J. Chứng minh (PQR) tiếp xúc với (I).
+ Một trường có 2007 nam và 2007 nữ. Mỗi học sinh tham gia không quá 100 câu lạc bộ; biết rằng bất kì hai bạn khác giới (1 nam và 1 nữ) tham gia ít nhất cùng một câu lạc bộ. Chứng minh rằng tồn tại một câu lạc bộ bao gồm ít nhất 11 nam và 11 nữ.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi

Tài liệu được xem nhiều nhất

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Điện Biên
Bộ đề ôn thi học kì 1 Lịch sử 12 năm 2023-2024 có đáp án
Tuyển tập đề thi thử TN THPT Quốc gia môn Ngữ văn 2023 của Bộ giáo dục – Đề 7
Đề thi HSG môn Sinh 12 năm 2024 có đáp án - Đề 3

Đề thi HSG môn Sinh 12 năm 2024 có đáp án - Đề 3

457 View

Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương
105 câu trắc nghiệm Địa lí Nông nghiệp theo từng mức độ
Chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Hoàng Việt
Chuyên đề Phát triển và phân bố nông nghiệp Việt Nam ôn thi TNTHPT
Đề thi học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Bưng Riềng – BR VT
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Trung An – Cần Thơ
Tài liệu ôn thi THPT Quốc gia môn vật lí tập 1

Tài liệu ôn thi THPT Quốc gia môn vật lí tập 1

419 View