Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương

Mã ID: 5480

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương:
+ Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Một đường tròn (O’) thay đổi, luôn đi qua B, C và cắt các cạnh AB, AC theo thứ tự ở D, E. Gọi D’, E’ lần lượt là các điểm đối xứng với D, E qua trung điểm các cạnh AB, AC. a) Chứng minh rằng trung điểm D’E’ luôn thuộc một đường thẳng cố định. b) Trên cung nhỏ và cung lớn BC của (O), lần lượt lấy các điểm R, S sao cho (DER), (DES) tiếp xúc trong với (O). Phân giác trong của các góc BRC, BSC cắt nhau ở K. Chứng minh rằng đường tròn (DEK) luôn tiếp xúc với đường thẳng BC.
+ Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x, y thuộc N và ii) 0 ≤ x ≤ y ≤ 2023. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập A (A con S) gồm 2023 phần tử của S sao cho A không chứa hai điểm nào có cùng hoành độ hoặc cùng tung độ?
+ Cho số nguyên n ≥ 1. Tìm số lượng lớn nhất các cặp gồm 2 phần tử phân biệt của tập {1; 2; …; n} sao cho tổng của các cặp khác nhau là các số nguyên khác nhau và không vượt quá n.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi

Tài liệu được xem nhiều nhất

Đề giữa kỳ 1 Toán 11 năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ
8 đề thi THPT Quốc gia môn Sinh học có đáp án

8 đề thi THPT Quốc gia môn Sinh học có đáp án

282 View

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hải Dương
Tài liệu hàm số mũ và hàm số lôgarit Toán 11 CTST

Tài liệu hàm số mũ và hàm số lôgarit Toán 11 CTST

302 View

Đề thi thử THPT Quốc gia 2023 môn GDCD phát triển từ đề minh họa - Đề 4
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Tổng hợp lý thuyết hóa vô cơ luyện thi THPT Quốc gia

Tổng hợp lý thuyết hóa vô cơ luyện thi THPT Quốc gia

656 View

Đề thi thử tốt nghiệp 2024 Ngữ văn có đáp án - Đề 4

Đề thi thử tốt nghiệp 2024 Ngữ văn có đáp án - Đề 4

355 View

Tài liệu chuyên đề đường tiệm cận của đồ thị hàm số
Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán

Đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán

307 View

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 15)

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 15)

462 View

Đề thi thử Toán vào 10 năm 2023 – 2024 trường Thị trấn Diễn Châu – Nghệ An