Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương

Mã ID: 5480

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương:
+ Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Một đường tròn (O’) thay đổi, luôn đi qua B, C và cắt các cạnh AB, AC theo thứ tự ở D, E. Gọi D’, E’ lần lượt là các điểm đối xứng với D, E qua trung điểm các cạnh AB, AC. a) Chứng minh rằng trung điểm D’E’ luôn thuộc một đường thẳng cố định. b) Trên cung nhỏ và cung lớn BC của (O), lần lượt lấy các điểm R, S sao cho (DER), (DES) tiếp xúc trong với (O). Phân giác trong của các góc BRC, BSC cắt nhau ở K. Chứng minh rằng đường tròn (DEK) luôn tiếp xúc với đường thẳng BC.
+ Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x, y thuộc N và ii) 0 ≤ x ≤ y ≤ 2023. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập A (A con S) gồm 2023 phần tử của S sao cho A không chứa hai điểm nào có cùng hoành độ hoặc cùng tung độ?
+ Cho số nguyên n ≥ 1. Tìm số lượng lớn nhất các cặp gồm 2 phần tử phân biệt của tập {1; 2; …; n} sao cho tổng của các cặp khác nhau là các số nguyên khác nhau và không vượt quá n.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Phước
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng

Tài liệu được xem nhiều nhất

Đề thi HK 2 Tiếng Anh 12 năm học 2023-2024 có đáp án - Đề 7
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Chuyên đề trắc nghiệm công thức logarit

Chuyên đề trắc nghiệm công thức logarit

379 View

Đề ôn thi TN THPT 2024 Tiếng Anh có lời giải chi tiết-Đề 6
Đề thi thử HSG Toán 9 năm 2023 – 2024 cụm chuyên môn 6 Yên Thành – Nghệ An
Trắc nghiệm ôn tập Toán 12 HK1 năm 2023-2024 có đáp án

Trắc nghiệm ôn tập Toán 12 HK1 năm 2023-2024 có đáp án

351 View

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 40)

Đề thi thử tốt nghiệp 2024 môn Văn có đáp án (Đề 40)

370 View

Đề ôn tập giữa học kỳ 1 Địa 12 NH 2023-2024 có đáp án-Đề 3
Đề ôn thi tốt nghiệp THPT 2024 môn Địa bám sát đề minh họa - Đề 1
Đề giữa học kì 1 Toán 12 năm 2023-2024 trường THPT Nguyễn Chí Thanh-TP HCM
Đề ôn thi tốt nghiệp THPT 2024 Tiếng Anh phát triển từ đề minh họa có đáp án
Lý thuyết và bài tập về sắt và hợp chất của sắt

Lý thuyết và bài tập về sắt và hợp chất của sắt

457 View