Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương

Mã ID: 5480

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương:
+ Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Một đường tròn (O’) thay đổi, luôn đi qua B, C và cắt các cạnh AB, AC theo thứ tự ở D, E. Gọi D’, E’ lần lượt là các điểm đối xứng với D, E qua trung điểm các cạnh AB, AC. a) Chứng minh rằng trung điểm D’E’ luôn thuộc một đường thẳng cố định. b) Trên cung nhỏ và cung lớn BC của (O), lần lượt lấy các điểm R, S sao cho (DER), (DES) tiếp xúc trong với (O). Phân giác trong của các góc BRC, BSC cắt nhau ở K. Chứng minh rằng đường tròn (DEK) luôn tiếp xúc với đường thẳng BC.
+ Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x, y thuộc N và ii) 0 ≤ x ≤ y ≤ 2023. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập A (A con S) gồm 2023 phần tử của S sao cho A không chứa hai điểm nào có cùng hoành độ hoặc cùng tung độ?
+ Cho số nguyên n ≥ 1. Tìm số lượng lớn nhất các cặp gồm 2 phần tử phân biệt của tập {1; 2; …; n} sao cho tổng của các cặp khác nhau là các số nguyên khác nhau và không vượt quá n.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bến Tre
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Đồng Nai
Đề chọn đội tuyển HSG cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Cà Mau
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh

Tài liệu được xem nhiều nhất

Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Cầu Giấy – Hà Nội
80 câu trắc nghiệm về sóng cơ và sự truyền sóng

80 câu trắc nghiệm về sóng cơ và sự truyền sóng

525 View

Đề thi giữa HK2 Hóa 12 năm 2024 có đáp án - Đề 1

Đề thi giữa HK2 Hóa 12 năm 2024 có đáp án - Đề 1

546 View

Đề thi thử Toán THPT Quốc gia 2023 Trường Chuyên Quang Trung - Lần 1
Đề thi thử tốt nghiệp 2024 môn Lý có đáp án - Đề 6

Đề thi thử tốt nghiệp 2024 môn Lý có đáp án - Đề 6

441 View

Tài liệu xác suất Toán 11 CTST

Tài liệu xác suất Toán 11 CTST

766 View

Đề giữa kỳ 1 Toán 10 năm 2023 – 2024 trường chuyên Lê Khiết – Quảng Ngãi
Đề thi thử THPT Quốc gia 2023 Lịch sử phát triển từ đề minh hoạ – Đề 8
Đề thi thử THPT quốc gia môn Toán năm 2024 có lời giải - Đề 15
Đề cuối kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Buôn Đôn – Đắk Lắk
Đề kiểm tra giữa học kỳ 1 Toán 9 năm 2023 – 2024 sở GD&ĐT Bắc Ninh
Đề giữa học kì 1 Toán 11 năm 2023 – 2024 trường THPT Nguyễn Chí Thanh – TP HCM