Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định
538 View
Mã ID: 4501
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023.
Mua sách tại những trang thương mại điện tử uy tín
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán & Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 06 tháng 06 năm 2023.
Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Bình Định:
+ Cho phương trình bậc hai: x2 + 2(m − 1)x − 2m = 0 (m là tham số). Chứng minh phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi giá trị của m. Tìm các giá trị của m để hai nghiệm x1, x2 thoả |x1 + 1| = |x2 + 1|.
+ Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB > AC. Các tiếp tuyến tại B, C của (O) cắt nhau tại P, đường thẳng AP cắt đường tròn (O) tại Q (khác A). Gọi M là trung điểm BC. Kẻ đường cao AH của tam giác ABC. 1. Chứng minh tứ giác BOCP nội tiếp và HAB = 90° – 1/2.AOC. 2. Chứng minh HAB = OAC và QB/MC = AB/AM. 3. Gọi D, E, F lần lượt là hình chiếu vuông góc của Q lên BC, CA, AB. Chứng minh rằng D là trung điểm EF.
+ Cho hình vuông có cạnh bằng 20. Bên trong hình vuông này chọn 2023 điểm phân biệt (không nằm trên các cạnh của hình vuông). Xét tập hợp A có 2027 điểm gồm 4 đỉnh của hình vuông và 2023 điểm đã chọn. Chứng minh rằng tồn tại ít nhất một tam giác có 3 đỉnh thuộc A với diện tích nhỏ hơn 1/10.
Đừng Đọc!!!
Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:
Email: hotro@captoc.vn
Bình luận
Tài liệu liên quan
Tài liệu được xem nhiều nhất
10 Vạn Câu Hỏi Vì Sao – Phần Vật Lý
384 View