Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình

Mã ID: 4525

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình:
+ Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó.
+ Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX.
+ Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề HSG Toán cấp trường năm 2023 – 2024 trường chuyên Nguyễn Trãi – Hải Dương
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Định
Đề Thi Học Sinh Giỏi Toán Lớp 12 Năm 2023 - 2024 Có đáp án - Đề 11
Đề HSG Toán 12 và lập đội tuyển thi HSG QG năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hưng Yên
Tuyển tập đề thi học sinh giỏi Toán 12 sở GD&ĐT Quảng Bình (2013 – 2023)
Đề Thi Học Sinh Giỏi Toán Lớp 12 Năm 2023 - 2024 có lời giải - Đề 12
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Ninh Bình
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh
Đề thi HSG Toán lớp 12 năm học 2023 - 2024 - Đề 9

Đề thi HSG Toán lớp 12 năm học 2023 - 2024 - Đề 9

658 View

Tài liệu được xem nhiều nhất

Đề thi thử tốt nghiệp 2024 Địa lí có đáp án - Đề 3

Đề thi thử tốt nghiệp 2024 Địa lí có đáp án - Đề 3

418 View

Đề tham khảo giữa kì 2 Toán 12 năm 2022 – 2023 THPT Thuận Thành 1 – Bắc Ninh
Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nam
Đề học kỳ 2 Toán 12 năm 2022 – 2023 trường chuyên Lương Văn Tụy – Ninh Bình
Bài tập trắc nghiệm hạt nhân nguyên tử có đáp án

Bài tập trắc nghiệm hạt nhân nguyên tử có đáp án

478 View

Chuyên đề trắc nghiệm thể tích khối lăng trụ

Chuyên đề trắc nghiệm thể tích khối lăng trụ

362 View

Đề thi thử Toán vào lớp 10 lần 2 năm 2023 – 2024 trường THPT Sơn Tây – Hà Nội
Chuyên đề trắc nghiệm ứng dụng tích phân tính thể tích
Đề học kì 1 Toán 10 năm 2022 – 2023 trường THPT Ngô Gia Tự – Phú Yên
Đề ôn thi TN THPT 2024 môn Hóa chuẩn cấu trúc đề minh họa - Đề 9
Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Thăng Long – TP HCM
Phương pháp giải Công suất và cực trị công suất

Phương pháp giải Công suất và cực trị công suất

397 View