Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình

Mã ID: 4525

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023

Mua sách tại những trang thương mại điện tử uy tín

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hòa Bình; kỳ thi được diễn ra vào ngày 29 tháng 08 năm 2023.

Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hòa Bình:
+ Cho dãy số (an) xác định bởi a1 = 2 và an + 1. a) Chứng minh rằng dãy số (an) là dãy số tăng. b) Với mỗi số nguyên dương n đặt bn. Chứng minh rằng dãy số (bn) có giới hạn hữu hạn và tìm giới hạn đó.
+ Cho tam giác ABC nhọn nội tiếp đường tròn (O). Điểm P bất kỳ nằm trong tam giác ABC sao cho AP vuông góc BC. Hạ PE vuông góc AB, PF vuông góc AC (E thuộc AB, F thuộc AC). Gọi L là giao điểm của BF và CE, Q là giao điểm của AL và BC và X là giao điểm của EF và BC. a) Chứng minh rằng đường tròn (QEF) luôn đi qua một điểm cố định. b) Kẻ đường kính AK của đường tròn (O). Chứng minh rằng KL vuông góc AX.
+ Cho tập hợp X = {1; 2; …; 49}. Tô màu ít nhất 24 phần tử của X với điều kiện sau: nếu a, b thuộc X (không nhất thiết phân biệt) được tô màu thì a + b cũng được tô màu, miễn là a + b thuộc X. Gọi S là tổng tất cả các phần tử không được tô màu của tập X. a) Chứng minh rằng S =< 625. b) Chỉ ra tất cả các cách tô màu sao cho S = 625.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Đề học sinh giỏi tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Nghệ An
Đề học sinh giỏi Toán 12 THPT cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023-2024 sở GD&ĐT Hải Dương
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương
Đề chọn HSG tỉnh thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ngãi
Đề thi học sinh giỏi thành phố Toán 12 năm 2023 – 2024 sở GD&ĐT Hà Nội
Đề học sinh giỏi Toán 12 chuyên năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc
Đề Thi Học Sinh Giỏi Toán Lớp 12 Năm 2023 - 2024 có lời giải - Đề 13
Đề thi HSG Toán lớp 12 năm học 2023 - 2024 - Đề 7

Đề thi HSG Toán lớp 12 năm học 2023 - 2024 - Đề 7

885 View

Đề HSG Toán 12 lần 1 năm 2023 – 2024 THPT Lý Thái Tổ & Gia Bình 1 – Bắc Ninh
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Lạng Sơn

Tài liệu được xem nhiều nhất

Bộ đề ôn thi học kì 1 Lịch sử 12 năm 2023-2024 có đáp án
Đề thi vào 10 chuyên môn Toán (chung – TN) năm 2023 – 2024 sở GD&ĐT Nam Định
Đề thi thử THPT quốc gia môn Toán năm 2024 có lời giải - Đề 9
Bài tập thể tích khối chóp có đáp án

Bài tập thể tích khối chóp có đáp án

346 View

Đề HSG Toán 9 vòng 2 năm 2023 – 2024 phòng GD&ĐT thành phố Hải Dương
Hệ thống bài tập trắc nghiệm tiếp tuyến đồ thị hàm số cơ bản – VD-VDC
Đề minh họa giữa kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Bảo Thắng 2 – Lào Cai
Đề giữa kỳ 1 Toán 12 năm 2023 – 2024 trường THPT Quế Sơn – Quảng Nam
Đề thi thử tốt nghiệp 2024 môn Lý có đáp án - Đề 9

Đề thi thử tốt nghiệp 2024 môn Lý có đáp án - Đề 9

464 View

Trắc nghiệm ôn tập Toán 12 HK1 năm 2023-2024 có đáp án

Trắc nghiệm ôn tập Toán 12 HK1 năm 2023-2024 có đáp án

285 View

Ôn tập vận dụng cao tổng hợp số phức thi TN THPT 2023 môn Toán
Chuyên đề khảo sát hàm số Toán 12: Cực trị của hàm số