Tài liệu chuyên đề ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số

Mã ID: 3364

Tài liệu chuyên đề ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Tài liệu gồm 294 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm lý thuyết cần nhớ, các dạng toán thường gặp, bài tập rèn luyện và bài tập tự luyện các chủ đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 1.

Mua sách tại những trang thương mại điện tử uy tín

Tài liệu chuyên đề ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Tài liệu gồm 294 trang, được biên soạn bởi thầy giáo Lê Quang Xe, bao gồm lý thuyết cần nhớ, các dạng toán thường gặp, bài tập rèn luyện và bài tập tự luyện các chủ đề ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Giải tích chương 1.

Phần I ĐẠI SỐ. Chương 1. ỨNG DỤNG ĐẠO HÀM KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ 1. Bài 1. SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐ 1. A LÝ THUYẾT CẦN NHỚ 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Tìm khoảng đơn điệu của một hàm số cho trước 2. + Dạng 2. Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị của hàm số 7. + Dạng 3. Tìm m để hàm số y = ax3 + bx2 + cx + d đơn điệu trên R 10. + Dạng 4. Tìm m để hàm y = (ax + b)/(cx + d) đơn điệu trên từng khoảng xác định 12.. + Dạng 5. Biện luận đơn điệu của hàm đa thức trên khoảng, đoạn cho trước 14. + Dạng 6. Biện luận đơn điệu của hàm phân thức trên khoảng, đoạn cho trước 17. + Dạng 7. Một số bài toán liên quan đến hàm hợp 18. + Dạng 8. Ứng dụng tính đơn điệu của hàm số 21. C BÀI TẬP RÈN LUYỆN 25. D BÀI TẬP TỰ LUYỆN 34. Bài 2. CỰC TRỊ CỦA HÀM SỐ 45. A LÝ THUYẾT CẦN NHỚ 45. B CÁC DẠNG TOÁN THƯỜNG GẶP 45. + Dạng 1. Ứng dụng đạo hàm (quy tắc 1) để tìm cực trị cực hàm số 45. + Dạng 2. Xác định cực trị khi biết bảng biến thiên hoặc đồ thị 48. + Dạng 3. Ứng dụng đạo hàm (quy tắc 2) để tìm cực trị cực hàm số 51. + Dạng 4. Tìm m để hàm số đạt cực trị tại điểm x0 cho trước 51. + Dạng 5. Biện luận cực trị hàm bậc ba y = ax3 + bx2 + cx + d 52. + Dạng 6. Biện luận cực trị hàm trùng phương y = ax4 + bx2 + c 55. C BÀI TẬP RÈN LUYỆN 57. D BÀI TẬP TỰ LUYỆN 67. Bài 3. GIÁ TRỊ LỚN NHẤT – NHỎ NHẤT CỦA HÀM SỐ 78. A LÝ THUYẾT CẦN NHỚ 78. B CÁC DẠNG TOÁN THƯỜNG GẶP 79. + Dạng 1. Tìm max – min của hàm số trên đoạn [a; b] cho cho trước 79. + Dạng 2. Tìm max – min trên một khoảng (a; b) cho trước 83. + Dạng 3. Một số bài toán ứng dụng trong thực tế 86. C BÀI TẬP RÈN LUYỆN 93. D BÀI TẬP TỰ LUYỆN 105. Bài 4. ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ 112. A LÝ THUYẾT CẦN NHỚ 112. B CÁC DẠNG TOÁN THƯỜNG GẶP 113. + Dạng 1. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = f(x). 113. + Dạng 2. Xác định TCN và TCĐ khi biết bảng biến thiên hàm số y = f(x) 117. + Dạng 3. Một số bài toán biện luận theo tham số m 119. C BÀI TẬP RÈN LUYỆN 123. D BÀI TẬP TỰ LUYỆN 134. Bài 5. ĐỒ THỊ CÁC HÀM SỐ THƯỜNG GẶP 143. A LÝ THUYẾT CẦN NHỚ 143. B CÁC DẠNG TOÁN THƯỜNG GẶP 144. + Dạng 1. Nhận dạng đồ thị hàm bậc ba y = ax3 + bx2 + cx + d 144. + Dạng 2. Nhận dạng đồ thị hàm bậc bốn trùng phương y = ax4 + bx2 + c 148. + Dạng 3. Nhận dạng đồ thị hàm nhất biến y = (ax + b)/(cx + d) 151. C BÀI TẬP RÈN LUYỆN LUYỆN 155. D BÀI TẬP TỰ LUYỆN 167. Bài 6. ỨNG DỤNG ĐỒ THỊ ĐỂ BIỆN LUẬN NGHIỆM PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH 176. A LÝ THUYẾT CẦN NHỚ 176. B CÁC DẠNG TOÁN THƯỜNG GẶP 177. + Dạng 1. Giải, biện luận nghiệm phương trình bằng phương pháp đồ thị 177. + Dạng 2. Giải, biện luận nghiệm bất phương trình bằng phương pháp đồ thị 182. + Dạng 3. Một số bài toán liên quan đến hàm hợp 184. C BÀI TẬP TỰ LUYỆN 191. D BÀI TẬP TỰ LUYỆN 207. Bài 7. SỰ TƯƠNG GIAO CỦA HAI ĐỒ THỊ 225. A LÝ THUYẾT CẦN NHỚ 225. B CÁC VÍ DỤ MINH HOẠ 225. + Dạng 1. Biện luận giao điểm của đường thẳng và đồ thị của hàm số bậc ba 225. + Dạng 2. Biện luận giao điểm của đường thẳng và đồ thị của hàm số trùng phương 230. + Dạng 3. Biện luận giao của đường thẳng và đồ thị hàm số y = (ax + b)/(cx + d) 234. C BÀI TẬP TỰ LUYỆN 239. Bài 8. TIẾP TUYẾN CỦA ĐỒ THỊ HÀM SỐ 252. A LÝ THUYẾT CẦN NHỚ 252. B CÁC VÍ DỤ MINH HOẠ 252. + Dạng 1. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm (x0; y0) cho trước 252. + Dạng 2. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) khi biết hệ số góc của tiếp tuyến bằng k0 256. + Dạng 3. Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x), biết tiếp tuyến đi qua điểm A(xA; yA) 259. + Dạng 4. Bài tập tổng hợp 262. C BÀI TẬP RÈN LUYỆN 265. D BÀI TẬP TỰ LUYỆN 276..

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Toàn tập phương pháp tọa độ trong không gian cơ bản

Toàn tập phương pháp tọa độ trong không gian cơ bản

352 View

Luyện thi THPTQG Chuyên đề khảo sát hàm số - Phùng Hoàng Em
Tài liệu chuyên đề khảo sát sự biến thiên và vẽ đồ thị của hàm số
Chuyên đề trắc nghiệm đường tiệm cận của đồ thị hàm số
Chuyên đề trắc nghiệm nguyên hàm của hàm lượng giác

Chuyên đề trắc nghiệm nguyên hàm của hàm lượng giác

581 View

Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD – VDC
Nắm trọn các chuyên đề hàm số – Phan Nhật Linh

Nắm trọn các chuyên đề hàm số – Phan Nhật Linh

767 View

Chủ đề tiếp tuyến và sự tiếp xúc của đồ thị hàm số
Chuyên đề trắc nghiệm hàm số lũy thừa - hàm số mũ và hàm số logarit
Một số bài tập vận dụng cao mũ và logarit có đáp án và hướng dẫn giải
Ngân hàng câu hỏi ứng dụng tích phân để tính diện tích hình phẳng
Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

Phân dạng bài tập trắc nghiệm môn Toán 12 (tập 2)

445 View

Tài liệu được xem nhiều nhất

Tổng Hợp 20 Đề Thi Học Kỳ 1 Toán Lớp 12 Có Lời giải

Tổng Hợp 20 Đề Thi Học Kỳ 1 Toán Lớp 12 Có Lời giải

741 View

Đề học kỳ 2 Toán 10 năm 2022 – 2023 trường THPT Đức Trọng – Lâm Đồng
Đề thi thử THPT Quốc gia môn Văn 2024 có đáp án - Đề 15

Đề thi thử THPT Quốc gia môn Văn 2024 có đáp án - Đề 15

730 View

Bộ 5 đề thi Toán 12 học kì 1 có đáp án và lời giải chi tiết
Đề thi HSG môn Vật lý 12 năm 2024 có đáp án - Đề 9

Đề thi HSG môn Vật lý 12 năm 2024 có đáp án - Đề 9

460 View

Bài tập kiểm tra Cách dùng be have do trong Tiếng Anh có lời giải
Chuyên đề trắc nghiệm phương trình mũ

Chuyên đề trắc nghiệm phương trình mũ

584 View

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Quảng Ninh
Chuyên đề tiệm cận của đồ thị hàm số mức thông hiểu giải chi tiết
Chuyên đề ngữ pháp Tiếng Anh - Chuyên đề 9 danh động từ và động từ nguyên mẫu
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Kon Tum