Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa
978 View
Mã ID: 5532
Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023.
Mua sách tại những trang thương mại điện tử uy tín
Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán THCS cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Diên Khánh, tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Tư ngày 04 tháng 10 năm 2023.
Trích dẫn Đề HSG Toán THCS cấp huyện năm 2023 – 2024 phòng GD&ĐT Diên Khánh – Khánh Hòa:
+ Cho a, b, c là ba số nguyên phân biệt và đa thức P(x) có hệ số nguyên. Chứng minh rằng ít nhất một trong các đẳng thức sau là sai: P(a) = b; P(b) = c; P(c) = a.
+ Tìm tất cả các số nguyên tố p để p vừa là tổng vừa là hiệu của hai số nguyên tố.
+ Cho tứ giác ABCD có ABD = ACD = 90°. Gọi I, K theo thứ tự là hình chiếu vuông góc của B, C trên cạnh AD. Gọi M là giao điểm của CI và BK, O là giao điểm của AC và BD. Qua O vẽ OE vuông góc với BI tại E. a) Chứng minh rằng: OB.IB = OE.AB. b) Chứng minh rằng: OM vuông góc AD. c) Gọi H là giao điểm của AB và DC, L là giao điểm của OM và AD. Chứng minh rằng?
Đừng Đọc!!!
Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:
Email: hotro@captoc.vn