Bài toán khảo sát hàm số trong các đề thi TN THPT 2023 môn Toán

Mã ID: 4523

Bài toán khảo sát hàm số trong các đề thi TN THPT 2023 môn Toán. Tài liệu gồm 1168 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập và phân dạng các bài toán chuyên đề Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số trong các đề thi tốt nghiệp THPT năm 2023 môn Toán (đề thi thử của các trường THPT, sở GD&ĐT và đề chính thức của Bộ GD&ĐT), có đáp án và lời giải chi tiết.

Mua sách tại những trang thương mại điện tử uy tín

Bài toán khảo sát hàm số trong các đề thi TN THPT 2023 môn Toán. Tài liệu gồm 1168 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tuyển tập và phân dạng các bài toán chuyên đề Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số trong các đề thi tốt nghiệp THPT năm 2023 môn Toán (đề thi thử của các trường THPT, sở GD&ĐT và đề chính thức của Bộ GD&ĐT), có đáp án và lời giải chi tiết.

D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 1 6.
D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 2 21.
D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 3 54.
D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 1 55.
D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 2 117.
D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 1 125.
D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 2 126.
D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3 132.
D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4 144.
D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3 161.
D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4 164.
D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 2 171.
D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 3 177.
D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 4 184.
D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 2 190.
D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 3 192.
D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 4 231.
D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 2 299.
D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 3 300.
D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 4 303.
D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 2 309.
D01 – 2.1 Câu hỏi lý thuyết về cực trị – Mức độ 1 310.
D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 1 311.
D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 2 319.
D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 3 343.
D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 4 347.
D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 1 348.
D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 2 433.
D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 3 446.
D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 4 449.
D04 – 2.4 Cực trị của hàm số chứa dấu GTTĐ, hàm số cho bởi nhiều công thức – Mức độ 2 450.
D04 – 2.4 Cực trị của hàm số chứa dấu GTTĐ, hàm số cho bởi nhiều công thức – Mức độ 3 453.
D04 – 2.4 Cực trị của hàm số chứa dấu GTTĐ, hàm số cho bởi nhiều công thức – Mức độ 4 464.
D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 1 480.
D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2 483.
D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3 488.
D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4 498.
D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2 514.
D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3 515.
D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4 520.
D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 1 525.
D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 2 526.
D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 3 529.
D08 – 2.8 Tìm m để hàm số bậc ba có cực trị – Mức độ 1 532.
D08 – 2.8 Tìm m để hàm số bậc ba có cực trị – Mức độ 2 533.
D08 – 2.8 Tìm m để hàm số bậc ba có cực trị – Mức độ 3 534.
D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 2 537.
D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 3 538.
D10 – 2.10 Tìm m để hàm số trùng phương có 1 hoặc 3 cực trị – Mức độ 2 558.
D10 – 2.10 Tìm m để hàm số trùng phương có 1 hoặc 3 cực trị – Mức độ 3 562.
D10 – 2.10 Tìm m để hàm số trùng phương có 1 hoặc 3 cực trị – Mức độ 4 573.
D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 3 574.
D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 4 582.
D14 – 2.14 Tìm m để hàm số chứa dấu GTTĐ có cực trị thỏa mãn điều kiện cho trước – Mức độ 3 584.
D14 – 2.14 Tìm m để hàm số chứa dấu GTTĐ có cực trị thỏa mãn điều kiện cho trước – Mức độ 4 591.
D15 – 2.15 Tìm m để hàm số khác có cực trị thỏa mãn điều kiện cho trước – Mức độ 3 609.
D15 – 2.15 Tìm m để hàm số khác có cực trị thỏa mãn điều kiện cho trước – Mức độ 4 630.
D01 – 3.1 Câu hỏi lý thuyết về MAX MIN – Mức độ 1 639.
D02 – 3.2 GTLN – GTNN trên đoạn [a;b] – Mức độ 1 640.
D02 – 3.2 GTLN – GTNN trên đoạn [a;b] – Mức độ 2 647.
D02 – 3.2 GTLN – GTNN trên đoạn [a;b] – Mức độ 3 665.
D02 – 3.2 GTLN – GTNN trên đoạn [a;b] – Mức độ 4 669.
D03 – 3.3 GTLN – GTNN trên khoảng – Mức độ 1 671.
D03 – 3.3 GTLN – GTNN trên khoảng – Mức độ 2 672.
D03 – 3.3 GTLN – GTNN trên khoảng – Mức độ 3 674.
D03 – 3.3 GTLN – GTNN trên khoảng – Mức độ 4 675.
D04 – 3.4 GTLN – GTNN của hàm số biết BBT, đồ thị – Mức độ 1 676.
D04 – 3.4 GTLN – GTNN của hàm số biết BBT, đồ thị – Mức độ 2 691.
D04 – 3.4 GTLN – GTNN của hàm số biết BBT, đồ thị – Mức độ 3 698.
D05 – 3.5 GTLN – GTNN của hàm số bằng PP đặt ẩn phụ – Mức độ 2 708.
D05 – 3.5 GTLN – GTNN của hàm số bằng PP đặt ẩn phụ – Mức độ 3 709.
D07 – 3.7 Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình – Mức độ 4 711.
D08 – 3.8 GTLN – GTNN của hàm số liên quan đến đồ thị, tích phân – Mức độ 3 713.
D08 – 3.8 GTLN – GTNN của hàm số liên quan đến đồ thị, tích phân – Mức độ 4 714.
D09 – 3.9 Tìm m để hàm số có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 1 720.
D09 – 3.9 Tìm m để hàm số có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 2 721.
D09 – 3.9 Tìm m để hàm số có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 3 723.
D09 – 3.9 Tìm m để hàm số có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 4 730.
D10 – 3.10 GTLN – GTNN của hàm số chứa dấu GTTĐ – Mức độ 2 733.
D10 – 3.10 GTLN – GTNN của hàm số chứa dấu GTTĐ – Mức độ 3 734.
D10 – 3.10 GTLN – GTNN của hàm số chứa dấu GTTĐ – Mức độ 4 736.
D11 – 3.11 Tìm m để hàm số chứa dấu GTTĐ có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 2 739.
D11 – 3.11 Tìm m để hàm số chứa dấu GTTĐ có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 3 740.
D11 – 3.11 Tìm m để hàm số chứa dấu GTTĐ có GTLN – GTNN thỏa mãn điều kiện cho trước – Mức độ 4 745.
D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 2 751.
D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 3 752.
D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 4 754.
D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 1 759.
D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 2 760.
D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hàm nhất biến – Mức độ 1 761.
D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hàm nhất biến – Mức độ 2 797.
D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hàm số phân thức hữu tỷ – Mức độ 1 800.
D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hàm số phân thức hữu tỷ – Mức độ 2 803.
D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hàm số phân thức hữu tỷ – Mức độ 3 807.
D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hàm số chứa căn – Mức độ 1 808.
D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hàm số chứa căn – Mức độ 2 809.
D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hàm số chứa căn – Mức độ 3 815.
D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hàm số biết BBT, đồ thị – Mức độ 1 819.
D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hàm số biết BBT, đồ thị – Mức độ 2 829.
D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hàm số biết BBT, đồ thị – Mức độ 3 837.
D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 1 841.
D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 2 842.
D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 3 843.
D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 4 845.
D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 1 846.
D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 2 904.
D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 3 936.
D02 – 5.2 Đồ thị hàm số chứa dấu GTTĐ – Mức độ 3 940.
D02 – 5.2 Đồ thị hàm số chứa dấu GTTĐ – Mức độ 4 942.
D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 2 945.
D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 3 946.
D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 1 949.
D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 2 984.
D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 3 994.
D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 1 997.
D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 2 1012.
D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 3 1034.
D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 4 1045.
D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 1 1053.
D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 2 1057.
D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 3 1084.
D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 4 1099.
D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 2 1105.
D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 3 1107.
D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 4 1114.
D08 – 5.8 Tìm m để PT có nghiệm mà không cô lập được m – Mức độ 3 1115.
D09 – 5.9 Tìm m liên quan đến tương giao của hàm số bậc 3 – Mức độ 2 1117.
D09 – 5.9 Tìm m liên quan đến tương giao của hàm số bậc 3 – Mức độ 3 1118.
D09 – 5.9 Tìm m liên quan đến tương giao của hàm số bậc 3 – Mức độ 4 1122.
D11 – 5.11 Tìm m liên quan đến tương giao của hàm số trùng phương – Mức độ 1 1123.
D11 – 5.11 Tìm m liên quan đến tương giao của hàm số trùng phương – Mức độ 2 1124.
D11 – 5.11 Tìm m liên quan đến tương giao của hàm số trùng phương – Mức độ 3 1125.
D11 – 5.11 Tìm m liên quan đến tương giao của hàm số trùng phương – Mức độ 4 1126.
D12 – 5.12 Tìm m liên quan đến tương giao của hàm số khác – Mức độ 4 1131.
D13 – 5.13 Ứng dụng tương giao của hàm số bậc 3 để giải bài toán cực trị – Mức độ 3 1138.
D13 – 5.13 Ứng dụng tương giao của hàm số bậc 3 để giải bài toán cực trị – Mức độ 4 1139.
D14 – 5.14 Ứng dụng tương giao giải bài toán tiệm cận – Mức độ 2 1142.
D14 – 5.14 Ứng dụng tương giao giải bài toán tiệm cận – Mức độ 3 1143.
D15 – 5.15 Điểm đặc biệt của đồ thị hàm số – Mức độ 1 1144.
D15 – 5.15 Điểm đặc biệt của đồ thị hàm số – Mức độ 2 1145.
D15 – 5.15 Điểm đặc biệt của đồ thị hàm số – Mức độ 3 1147.
D16 – 5.16 Điểm cố định của đồ thị hàm số – Mức độ 1 1148.
D17 – 5.17 Đồ thị hàm số f(x), f’(x), f’’(x) trên cùng một hệ trục tọa độ – Mức độ 3 1149.
D17 – 5.17 Đồ thị hàm số f(x), f’(x), f’’(x) trên cùng một hệ trục tọa độ – Mức độ 4 1151.
D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 1 1154.
D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 2 1155.
D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 3 1158.
D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 4 1159.

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Trắc nghiệm ứng dụng tích phân để tính diện tích hình phẳng
Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Cần Thơ
Chuyên Đề Cực Trị Trong Không Gian Oxyz Mức Vận Dụng Giải Chi Tiết
Chuyên đề tỉ số thể tích khối đa diện Hình 12 có lời giải
75 câu trắc nghiệm tọa độ của điểm và vectơ trong không gian
170 câu trắc nghiệm phương trình mặt cầu mức thông hiểu trong không gian
37 câu trắc nghiệm số phức có đáp án

37 câu trắc nghiệm số phức có đáp án

385 View

Chuyên đề trắc nghiệm Ứng dụng tích phân có đáp án

Chuyên đề trắc nghiệm Ứng dụng tích phân có đáp án

372 View

Tóm tắt lý thuyết môn Toán 12 – Nguyễn Ngọc Dũng

Tóm tắt lý thuyết môn Toán 12 – Nguyễn Ngọc Dũng

634 View

Bài giảng phương trình đường thẳng trong không gian – Lê Hồng Đức
Hệ thống bài tập trắc nghiệm tiếp tuyến đồ thị hàm số cơ bản – VD-VDC
25 đề kiểm tra 1 tiết chương nguyên hàm - tích phân - ứng dụng

Tài liệu được xem nhiều nhất

Đề minh họa giữa kỳ 2 Toán 11 Cánh Diều năm 2023 – 2024 sở GD&ĐT Bà Rịa – Vũng Tàu
Chuyên Đề Nguyên Hàm Tích Phân Ôn Thi THPT Quốc Gia

Chuyên Đề Nguyên Hàm Tích Phân Ôn Thi THPT Quốc Gia

598 View

Đề thi thử tốt nghiệp 2024 môn Hóa - Đề 4

Đề thi thử tốt nghiệp 2024 môn Hóa - Đề 4

571 View

Đề thi thử môn GDCD 2023 THPT Hàn Thuyên – Bắc Ninh lần 2

Đề thi thử môn GDCD 2023 THPT Hàn Thuyên – Bắc Ninh lần 2

384 View

Đề thi HSG Toán 9 vòng 1 năm 2023 – 2024 trường THPT chuyên Hà Nội – Amsterdam
Trọn bộ tài liệu tự học TOEIC tại nhà từ A - Z theo format 2023 mới nhất PDF VIDEO AUDIO
Đề tham khảo giữa kỳ 2 Toán 11 CTST năm 2023 – 2024 trường THPT Văn Bàn 3 – Lào Cai
Đề cương ôn tập môn Sinh 12 giữa học kỳ 2 năm học 2023-2024
Trắc nghiệm ôn tập Hóa 12 giữa HK2 năm học 2023-2024

Trắc nghiệm ôn tập Hóa 12 giữa HK2 năm học 2023-2024

502 View

Đề Thi Thử Môn Hóa 2023 THPT Hàn Thuyên Lần 1 Có Đáp Án

Đề Thi Thử Môn Hóa 2023 THPT Hàn Thuyên Lần 1 Có Đáp Án

457 View

Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2023 – 2024 sở GD&ĐT TP Hồ Chí Minh
60 đề thi thử thpt quốc gia môn Vật lý 2024 có đáp án và lời giải