Bài 1: Hàm số lượng giác
108 View
Lý thuyết Hàm số lượng giác
I. TÓM TẮT LÝ THUYẾT:
1. Hàm số sin và hàm số cosin a) Hàm số sin - Định nghĩa: Quy tắc đặt tương ứng mỗi số thực x đối với số thực sin x sin: R → R x → y = sin x được gọi là hàm số sin, kí hiệu là: y = sinx. - Tập xác định của hàm số sin là R. - Là hàm số lẻ. b) Hàm số côsin - Định nghĩa: Quy tắc đặt tương ứng mỗi số thực x đối với số thực cos x cos: R → R x → y = cos x được gọi là hàm số cosin, kí hiệu là: y = cos x. - Tập xác định của hàm số cosin là R. - Là hàm số chẵn. 2. Hàm số tang và hàm số cotang a) Hàm số tang - Định nghĩa: Hàm số tang là hàm số được xác định bới công thức:
(cos x ≠ 0)
- Kí hiệu là y = tan x
- Tập xác định của hàm số y = tan x là D = R{π/2 + kπ, k ∈ Z}.
- Là hàm số lẻ.
b) Hàm số cotang
- Định nghĩa:
Hàm số cotang là hàm số được xác định bới công thức:
(sin x ≠ 0)
- Kí hiệu là y = cot x
- Tập xác định của hàm số y = cot x là D = R{kπ, k ∈ Z}.
- Là hàm số lẻ.
3. Tính tuần hoàn của hàm lượng giác
- Các hàm số y = sin x và y = cos x là những hàm số tuần hoàn với chu kì 2π.
- Các hàm số y = tan x và y = cot x là những hàm số tuần hoàn với chu kì π.
4. Sự biến thiên và đồ thị của hàm số lượng giác
a) Hàm số y = sin x
- Sự biến thiên và đồ thị hàm số y = sin x trên đoạn [0; π]:
Hàm số y = sin x đồng biến trên [0; π/2] và nghịch biến trên [π/2; π]
- Lưu ý: Vì y = sin x là hàm số lẻ nên lấy đối xứng đồ thị hàm số trên đoạn [0; π] qua gốc tọa độ O, ta được đồ thị hàm số trên đoạn [–π; 0]
- Đồ thị hàm số y = sin x trên R: Tịnh tiến liên tiếp đồ thị hàm số trên đoạn [–π; π] theo các vecto v→ = (2π; 0) và –v→ = (–2π; 0)
- Tập giá trị của hàm số y = sin x là [–1; 1]
b) Hàm số y = cos x
- Bằng cách tịnh tiến đồ thị hàm số y = sin x theo vectơ u→ = (-π/2; 0), ta được đồ thị của hàm số y = cos x.
- Hàm số y = cos x đồng biến trên [–π; 0] và nghịch biến trên [0; π]
- Tập giá trị của hàm số y = cos x là [–1; 1]
c) Hàm số y = tan x
- Hàm số y = tan x đồng biến trên [0; π/2 )
- Đồ thị hàm số có tâm đối xứng là gốc tọa độ O
=> Lấy đối xứng qua tâm O đồ thị hàm số y = tan x trên [0; π/2 ), ta được đồ thị hàm số y = tan x trên (–π/2; 0]
- Tịnh tiến đồ thị hàm số trên khoảng (–π/2 ; π/2) songsong với trục hoành từng đoạn có độ dài π, ta được đồ thị hàm số y = tan x trên D.
Tập giá trị của hàm số y = tan x là khoảng (–∞; +∞)
d) Hàm số y = cot x
- Hàm số y = cot x nghịch biến trên khoảng (0; π)
- Tịnh tiến đồ thị hàm số trên khoảng (0; π) song song với trục hoành từng đoạn có độ dài π, ta được đồ thị hàm số y = cot x trên D.
- Tập giá trị của hàm số y = cot x là khoảng (–∞; +∞)
Trả lời câu hỏi trang 4:
a) Sử dụng máy tính bỏ túi, hãy tính sinx, cosx với x là các số sau: π/6; π/4; 1,5; 2; 3,1; 4,25; 5. b) Trên đường tròn lượng giác, với điểm gốc A, hãy xác định các điểm M mà số đo của cung AM bằng x (rad) tương ứng đã cho ở trên và xác định sinx, cosx (lấy π ≈ 3,14) Lời giải: a) sin π/6 = 1/2; cos π/6 = √3/2 sin π/4 = √2/2; cos π/4 = √2/2 sin 1,5 = 0,9975; cos 1,5 = 0,0707 sin 2 = 0,9093; cos 2 = -0,4161 sin 3,1 = 0,0416; cos 3,1 = -0,9991 sin 4,25 = -0,8950; cos 4,25 = -0,4461 sin 5 = -0,9589; cos 5 = 0,2837 b)
Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 6: Hãy so sánh các giá trị sinx và sin(-x), cosx và cos(-x).
Lời giải:
sin x = -sin(-x)
cosx = cos(-x)
Trả lời câu hỏi trang 6:
Tìm những số T sao cho f(x + T) với mọi x thuộc tập xác định của hàm số sau: a) f(x) = sinx; b) f(x) = tanx. Lời giải: a) T = k2π (k ∈ Z) b) T = kπ (k ∈ Z)Bài 1 (trang 17 SGK Đại số 11):
Hãy xác định giá trị của x trên đoạn [- π ; 3π/2] để hàm số y = tan x: a. Nhận giá trị bằng 0 b. Nhận giá trị bằng 1 c. Nhận giá trị dương d. Nhận giá trị âm Lời giải: Quan sát đồ thị hàm số y = tan x trên đoạn [-π; 3π/2].
a. tan x = 0 tại các giá trị x = -π; 0; π.
(Các điểm trục hoành cắt đồ thị hàm số y = tanx).
b. tan x = 1 tại các giá trị x = -3π/4; π/4; 5π/4.
c. tan x > 0 với x ∈ (-π; -π/2) ∪ (0; π/2) ∪ (π; 3π/2).
(Quan sát hình dưới)
d. tan x < 0 khi x ∈ [-π/2; 0) ∪ [π/2; π)
(Quan sát hình dưới).
Kiến thức áp dụng
+ Hàm số y = tan x có chu kì π và có đồ thị:
Bài 2 (trang 17 SGK Đại số 11):
Tìm tập xác định của hàm số:
Lời giải:
a) Hàm số
xác định
Do đó (1) ⇔ 1 – cos x ≠ 0 ⇔ cos x ≠ 1 ⇔ x ≠ k.2π.
Vậy tập xác định của hàm số là D = R {k.2π, k ∈ Z}.
c) Hàm số
Vậy tập xác định của hàm số là
d) Hàm số
xác định
Vậy tập xác định của hàm số là
+ Hàm phân thức xác định khi mẫu thức khác 0.
+ Hàm căn thức xác định khi biểu thức trong căn ≥ 0
+ Hàm số y = tan x xác định ⇔ x ≠ π/2 + k.π (k ∈ Z)
+ Hàm số y = cot x xác định ⇔ x ≠ k.π (k ∈ Z).
+ Ta có:
Vậy từ đồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:
- Giữ nguyên phần đồ thị nằm phía trên trục hoành (sin x > 0).
- Lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.
Ta được đồ thị hàm số y = |sin x| là phần nét liền hình phía dưới.
Kiến thức áp dụng
Bài 3 (trang 17 SGK Đại số 11):
Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = | sin x| Lời giải: + Đồ thị hàm số y = sin x.
+ Ta có:
Vậy từ đồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:
- Giữ nguyên phần đồ thị nằm phía trên trục hoành (sin x > 0).
- Lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.
Ta được đồ thị hàm số y = |sin x| là phần nét liền hình phía dưới.
Kiến thức áp dụng
+ Đồ thị hàm số y = sin x (SGK Đại số Giải tích 11 – trang 9).
+ Từ đồ thị hàm số y = f(x) ta có thể suy ra đồ thị hàm số y = |f(x)| bằng cách giữ nguyên phần đồ thị nằm phía trên trục hoành, lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành.
Đồ thị:
Đồ thị hàm số y = sin 2x.
Kiến thức áp dụng
Bài 4 (trang 17 SGK Đại số 11):
Chứng minh rằng sin 2(x + kπ) = sin 2x với mọi số nguyên k. Từ đó vẽ đồ thị hàm số y = sin 2x Lời giải: + sin 2x (x + kπ) = sin (2x + k2π) = sin 2x, (k ∈ Z) (Do hàm số y = sin x có chu kì 2π). ⇒ Hàm số y = sin 2x tuần hoàn với chu kì π. + Hàm số y = sin 2x là hàm số tuần hoàn với chu kì π và là hàm số lẻ. Bảng biến thiên hàm số y = sin 2x trên [-π/2; π/2]
Đồ thị:
Đồ thị hàm số y = sin 2x.
Kiến thức áp dụng
+ Hàm số y = f(x) được gọi là hàm số tuần hoàn với chu kì a nếu f(x + a) = f(x) với mọi x ∈ R.
+ Xác định hoành độ các giao điểm.
Ta thấy đường thẳng
cắt đồ thị hàm số y = cos x tại các điểm có hoành độ
Dựa vào đồ thị hàm số y = sin x ta thấy
y = sin x > 0
⇔ x ∈ (-2π; -π) ∪ (0; π) ∪ (2π; 3π) ∪…
hay x ∈ (k2π; π + k2π) với k ∈ Z.
Dựa vào đồ thị hàm số y = cos x ta thấy
y = cos x < 0
Lời giải:
a) Ta có:
Vậy hàm số đạt giá trị lớn nhất bằng 3.
b) Ta có: -1 ≤ sin x ≤ 1
⇒ -2 ≤ -2sin x ≤ 2
⇒ 1 ≤ 3 – 2sin x ≤ 5
hay 1 ≤ y ≤ 5.
Vậy hàm số đạt giá trị lớn nhất bằng 5.
Kiến thức áp dụng
Bài 5 (trang 18 SGK Đại số 11):
Dựa vào đồ thị hàm số y = cos x, tìm các giá trị của x để cos x = 1/2 Lời giải: + Vẽ đồ thị hàm số y = cos x. + Vẽ đường thẳng
Ta thấy đường thẳng
Bài 6 (trang 18 SGK Đại số 11):
Dựa trên đồ thị hàm số y = sin x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương. Lời giải: Đồ thị hàm số y = sin x:
Dựa vào đồ thị hàm số y = sin x ta thấy
y = sin x > 0
⇔ x ∈ (-2π; -π) ∪ (0; π) ∪ (2π; 3π) ∪…
hay x ∈ (k2π; π + k2π) với k ∈ Z.
Bài 7 (trang 18 SGK Đại số 11):
Dựa vào đồ thị hàm số y = cos x, tìm các khoảng giá trị của x để hàm số đó nhận giá trị âm. Lời giải: Đồ thị hàm số y = cos x:
Dựa vào đồ thị hàm số y = cos x ta thấy
y = cos x < 0
Bài 8 (trang 18 SGK Đại số 11):
Tìm giá trị lớn nhất của các hàm số:
Lời giải:
a) Ta có:
Vậy hàm số đạt giá trị lớn nhất bằng 3.
b) Ta có: -1 ≤ sin x ≤ 1
⇒ -2 ≤ -2sin x ≤ 2
⇒ 1 ≤ 3 – 2sin x ≤ 5
hay 1 ≤ y ≤ 5.
Vậy hàm số đạt giá trị lớn nhất bằng 5.
Kiến thức áp dụng
Với mọi x ∈ R ta luôn có : sin x ∈ [-1 ; 1] ; cos x ∈ [-1 ; 1].
Các bài viết liên quan
Các bài viết được xem nhiều nhất
5 tác phẩm trọng tâm ôn thi THPT Quốc gia 2024 môn Ngữ Văn khả năng...
26013 View
Đáp án CHÍNH THỨC đề thi tốt nghiệp THPT 2023 từ Bộ GD&ĐT (Tất cả...
1036 View
Đề thi tốt nghiệp THPT Quốc gia năm 2023 môn Địa lí và gợi ý giải...
974 View
Đề thi tốt nghiệp THPT Quốc gia năm 2023 môn Giáo dục công dân và gợi...
965 View
Theo dõi Captoc trên