Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang
641 View
Mã ID: 4540
Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023.
Mua sách tại những trang thương mại điện tử uy tín
Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 03 tháng 06 năm 2023.
Trích dẫn Đề thi vào lớp 10 chuyên môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kiên Giang:
+ Cho một hình vuông có cạnh bằng 19 và có 2024 điểm phân biệt tùy ý trong hình vuông. Chứng minh rằng luôn tồn tại một hình tròn có bán kính bằng 1 chứa ít nhất 6 điểm trong 2024 điểm đã cho (các hình đã cho đều đo bằng cùng đơn vị đo).
+ Cho tam giác ABC vuông cân tại A, cạnh AB có độ dài bằng 22. Gọi điểm M thuộc cạnh AC sao cho MC = 2AM. Kẻ đường thẳng qua A vuông góc với BM tại H và cắt BC tại D. Điểm K thuộc đường thẳng AD sao cho CK vuông góc AD. Tính độ dài đoạn AH và đoạn CD.
+ Cho tam giác ABC (AB < AC), cả ba góc đều là góc nhọn và nội tiếp trong đường tròn tâm O. Ba đường cao của tam giác ABC là AD, BM, CN (D thuộc BC, M thuộc AC, N thuộc AB) đồng quy tại H. Đường thẳng MN cắt BC tại S. Gọi I, K lần lượt là trung điểm của AH và BC, Q là giao điểm của AD với MN. Đường thẳng qua H song song với BC cắt SM tại P. a) Chứng minh SB.SC = SM.SN. b) Chứng minh DIK đồng dạng với HPQ. c) Chứng minh HD ID HQ OK.
Đừng Đọc!!!
Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:
Email: hotro@captoc.vn
Bình luận
Tài liệu liên quan
Phương trình nghiệm nguyên chọn lọc
232 View