Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội
822 View
Mã ID: 4775
Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023.
Mua sách tại những trang thương mại điện tử uy tín
Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội. Captoc.vn giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra CLB Văn Hóa Toán 9 và chọn đội tuyển học sinh giỏi môn Toán 9 vòng 1 năm học 2023 – 2024 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 07 tháng 09 năm 2023.
Trích dẫn Đề chọn đội tuyển HSG Toán 9 vòng 1 năm 2023 – 2024 trường THCS Cầu Giấy – Hà Nội:
+ Cho x và y là các số nguyên dương thỏa mãn x3 + y và x + y3 cùng chia hết cho x2 + y2. Chứng minh rằng 2x + 2y là số chính phương.
+ Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH (H thuộc BC). Trên tia đối của tia BC lấy điểm K sao cho KH = HA. Qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P. 1. Chứng minh rằng tam giác AKC đồng dạng với tam giác BPC. 2. Gọi Q là trung điểm của BP. Chứng minh BQH = BCP. 3. Tia AQ cắt BC tại I. Chứng minh AH/HB – BC/IB = 1.
+ Xét tập T = {1; 2; 3; …; 13}. Lập tất cả các tập con hai phần tử trong T sao cho hiệu của hai phần tử đó là 5 hoặc 8. Cho M là tập con của S = {1; 2; 3; …; 869} có tính chất hiệu hai số bất kỳ của M không là 5 hoặc 8. Hỏi M có nhiều nhất bao nhiêu phần tử?
Đừng Đọc!!!
Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:
Email: hotro@captoc.vn