Lời giải BÀI 11: ƯỚC CHUNG ƯỚC CHUNG LỚN NHẤT soạn Toán 6 Trang 44 45 46 47 48 Kết nối tri thức với cuộc sống

Mã ID: 2734

Mua sách tại những trang thương mại điện tử uy tín

Cùng Captoc.vn tìm hiểu tài liệu Lời giải BÀI 11: ƯỚC CHUNG ƯỚC CHUNG LỚN NHẤT soạn Toán 6 Trang 44 45 46 47 48 Kết nối tri thức với cuộc sống

1. Ước chung và ước chung lớn nhất

Hoạt động 1 trang 44 Toán lớp 6 Tập 1: 

Tìm các tập hợp Ư(24) và Ư(28). Lời giải: +) Vì 24 chia hết cho các số: 1; 2; 3; 4; 6; 8; 12; 24 Do đó: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}. +) Vì 28 chia hết cho các số: 1; 2; 4; 7; 14; 28 Do đó: Ư(28) = {1; 2; 4; 7; 14; 28}.

Hoạt động 2 trang 44 Toán lớp 6 Tập 1:

Gọi ƯC(24, 28) là tập hợp các số vừa là ước của 24, vừa là ước của 28. Hãy viết tập hợp  ƯC(24, 28). Lời giải: Ta có: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}            Ư(28) = {1; 2; 4; 7; 14; 28} Các số vừa là ước của 24, vừa là ước của 28 là: 1; 2; 4. Vậy ƯC(24; 28) = {1; 2; 4}.

Hoạt động 3 trang 44 Toán lớp 6 Tập 1: 

Tìm số lớn nhất trong tập ƯC(24, 28). Lời giải: Ta có: ƯC(24; 28) = {1; 2; 4} Số lớn nhất trong ƯC(24; 28) là 4.

Câu hỏi 1 trang 45 Toán lớp 6 Tập 1: 

Tìm ƯCLN(90, 10). Lời giải: Vì 90 ⁝ 10 nên ta có ƯCLN(90, 10) = 10.

Luyện tập 1 trang 45 Toán lớp 6 Tập 1: 

Bố có 12 quả bóng màu xanh và 15 quả bóng màu đỏ. Bố muốn chia số bóng cho ba anh em Việt, Hà và Nam đều như nhau gồm cả bóng màu xanh và bóng màu đỏ. Hỏi bố có thực hiện được điều đó hay không? Lời giải: Ta có: 12 ⁝ 3, 15 ⁝ 3  hay 3 ∈ Ư(12); 3 ∈ Ư(15) Nên 3 ∈ ƯC(12; 15) do đó bố chia được số bóng cho ba anh em Việt, Hà và Nam đều như nhau gồm cả bóng màu xanh và bóng màu đỏ. Vậy bố có thể thực hiện phép chia này.

2. Cách tìm ước chung lớn nhất

Vận dụng 1 trang 45 Toán lớp 6 Tập 1:

Tuần này lớp 6A và 6B gồm 40 học sinh nữ và 36 học sinh nam được phân công đi thu gom rác làm sạch bờ biển ở địa phương. Nếu chia nhóm sao cho số học sinh nam và nữ trong các nhóm bằng nhau thì: a) Có thể chia được thành bao nhiêu nhóm học sinh? b) Có thể chia nhiều nhất bao nhiêu nhóm học sinh? Lời giải: a)  Để số học sinh nam và nữ trong các nhóm đều bằng nhau nên số nhóm chính là ước chung của 36 và 40 Gọi x là số nhóm học sinh chia được (nhóm) Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36} Ư(40) = {1; 2; 4; 5; 8; 10; 20; 40} Do đó ƯC(36; 40) = {1; 2; 4} Số học sinh nam và nữ trong mỗi nhóm được cho như bảng dưới đây:
Số nhóm Số nam Số nữ
1 36 : 1 = 36 40 : 1 = 40
2 36 : 2 = 18 40 : 2 = 20
4 36 : 4 = 9 40 : 4 = 10
Vậy có thể chia được 1 nhóm; 2 nhóm hoặc 4 nhóm. b) Số nhóm chia được nhiều nhất là ƯCLN(36; 40) Vì ƯC(36; 40) = {1; 2; 4} nên ƯCLN(36; 40) = 4. Vậy có thể chia nhiều nhất 4 nhóm học sinh.

Câu hỏi 2 trang 46 Toán lớp 6 Tập 1:

Tìm ƯCLN(45, 150) biết 45 = 32.5 và 150 = 2.3.5. Lời giải: +) Phân tích các số 45, 150 ra thừa số nguyên tố:                45 = 32.5                150 = 2.3.52 +) Các thừa số nguyên tố chung là: 3; 5 +) Số mũ nhỏ nhất của 3 là 1 và số mũ nhỏ nhất của 5 là 1 nên  ƯCLN(45, 150) = 3. 5 = 15 Vậy ƯCLN(45, 150) = 3. 5 = 15.

Luyện tập 2 trang 46 Toán lớp 6 Tập 1: 

Tìm ƯCLN(36, 84). Lời giải: Phân tích các số 36 và 84 ra thừa số nguyên tố ta được:   36= 22.32;                          84 = 22.3.784; Ta thấy 2 và 3 là các thừa số nguyên tố chung của 36 và 84. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1 nên ƯCLN(36, 84) = 22.3 = 12 Vậy ƯCLN(36, 84) = 12.

Vận dụng 2 trang 46 Toán lớp 6 Tập 1:

Một đại hội bộ binh có ba trung đội: trung đội I có 24 chiến sĩ, trung đội II có 28 chiến sĩ, trung đội III có 36 chiến sĩ. Trong cuộc diễu binh, cả ba trung đội phải xếp thành các hàng dọc đều nhau mà không có chiến sĩ nào trong mỗi trung đội bị lẻ hàng. Hỏi có thể xếp được nhiều nhất bao nhiêu hàng dọc? Lời giải: Vì trong cuộc diễu binh, cả ba trung đội phải xếp thành các hàng dọc đều nhau mà không có chiến sĩ nào trong mỗi trung đội bị lẻ hàng nên số hàng dọc là ƯC(24; 28; 36). Mặt khác để xếp được nhiều nhất số hàng dọc thì số hàng dọc là ƯCLN(24; 28; 36) Ta có: 24 = 23.3 28 = 22.7 36 = 22.32 Ta thấy 2 là thừa số nguyên tố chung của 24; 28 và 36. Số mũ nhỏ nhất của 2 là 2 nên ƯCLN(24; 28; 36) = 22 = 4 Vậy có thể xếp được nhiều nhất 4 hàng dọc.

Câu hỏi 3 trang 46 Toán lớp 6 Tập 1: 

Biết ƯCLN(75; 105) = 15, hãy tìm ƯC(75, 105). Lời giải: Vì ƯCLN(75; 105) = 15 nên ƯC(75, 105) = Ư(15) = {1; 3; 5; 15} Vậy ƯC(75, 105) = {1; 3; 5; 15}.

Thử thách nhỏ trang 47 Toán lớp 6 Tập 1:

Vào ngày thứ Bảy, cô Lan tổ chức cho học sinh đi tham quan Bảo tàng Dân tộc học. Các học sinh đóng tiền mua vé, mỗi em một vé. Số tiền cô Lan thu được từng ngày được ghi lại ở bảng bên. a) Hỏi số tiền để mua một vé (giá vé được tính theo đơn vị nghìn đồng) có thể là bao nhiêu, biết giá vé lớn hơn 2000 đồng? b) Có bao nhiêu học sinh tham gia chuyến đi, biết số học sinh trong lớp khoảng từ 20 đến 40 người.
Ngày Số tiền đóng   (đồng)
Thứ hai 56 000
Thứ Ba 28 000
Thứ Tư 42 000
Thứ Năm 98 000
Lời giải: a) Vì mỗi em mua một vé nên giá vé tính theo nghìn đồng chính là  ƯC(56 000; 28 000; 42 000; 98 000) Ta có: 56 000 = 26.53.7            28 000 = 25.53.7            42 000 = 24.3.53.7            98 000 = 24.53.72 Ta thấy 2; 5 và 7 là các thừa số nguyên tố chung của 56 000; 28 000; 42 000; 98 000. Số mũ nhỏ nhất của 2 là 4, số mũ nhỏ nhất của 5 là 3, số mũ nhỏ nhất của 7 là 1 nên  ƯCLN (56 000; 28 000; 42 000; 98 000) = 24.53.7 = 14 000 ƯC(56 000; 28 000; 42 000; 98 000) = Ư(14 000)  Do giá vé tính theo đơn vị nghìn đồng nên giá vé chỉ có thể là: 1 000; 2 000; 7 000 đồng. Mà giá vé lớn hơn 2000 đồng nên giá vé là 7 000 đồng. b) Tổng số tiền cô Lan thu được thừ thứ Hai đến thứ Năm là: 56 000 + 28 000 + 42 000 + 98 000 = 224 000 (đồng) Số học sinh tham gia chuyến đi là: 224 000 : 7 000 = 32 (học sinh) Vậy giá vé là 7 000 đồng và có 32 học sinh tham gia chuyến đi.

3. Rút gọn về phân số tối giản

Câu hỏi 4 trang 47 Toán lớp 6 Tập 1:

Luyện tập 3 trang 48 Toán lớp 6 Tập 1:

Bài tập

Bài 2.30 trang 48 Toán lớp 6 Tập 1:

Tìm tập hợp ước chung của: a) 30 và 45; b) 42 và 70. Lời giải: a) Phân tích các số 30 và 45 ra thừa số nguyên tố: 30 = 2.3.5;           45 = 32.5 +) Ta chọn ra các thừa số nguyên tố chung là: 3 và 5. +) Số mũ nhỏ nhất của 3 là 1, số mũ nhỏ nhất của 5 là 1. Khi đó:  ƯCLN(30, 45) = 3.5 = 15. Ta được ƯC(30; 45) = Ư(15) = {1; 3; 5; 15} Vậy ƯC(30; 45) = {1; 3; 5; 15}. b) Phân tích các số 42 và 70 ra thừa số nguyên tố: 42 = 2.3.7;           70 = 2.5.7; +) Ta chọn ra các thừa số nguyên tố chung là: 2 và 7. +) Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 7 là 1. Khi đó:  ƯCLN(42, 70) = 2.7 = 14. Ta được ƯC(42; 70) = Ư(14) = {1; 2; 7; 14} Vậy ƯC(42; 70) = {1; 2; 7; 14}.

Bài 2.31 trang 48 Toán lớp 6 Tập 1:

Tìm ƯCLN của hai số: a) 40 và 70; b) 55 và 77. Lời giải: a) Phân tích các số 40 và 70 ra thừa số nguyên tố ta được: 40 = 23.5;                             70 = 2.5.7 Ta thấy 2 và 5 là các thừa số nguyên tố chung của 40 và 70. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 5 là 1 nên ƯCLN(40, 70) = 2. 5 = 10 Vậy ƯCLN(40, 70) = 10. b) Phân tích các số 55 và 77 ra thừa số nguyên tố ta được: 55 = 5. 11;                              77 = 7. 11                           Ta thấy 11 thừa số nguyên tố chung của 55 và 77. Số mũ nhỏ nhất của 11 là 1 nên ƯCLN(55, 77) = 11 Vậy ƯCLN(40, 70) = 11.

Bài 2.32 trang 48 Toán lớp 6 Tập 1:

Tìm ƯCLN của: a) 22.5 và 2. 3. 5; b) 24.3; 22.32.5 và 24.11 Lời giải: a) 22.5 và 2. 3. 5 Ta thấy 2 và 5 là thừa số nguyên tố chung. Số mũ nhỏ nhất của 2 là 1 và số mũ nhỏ nhất của 5 là 1 nên ƯCLN cần tìm là 2.5 = 10. b) 24.3; 22.32.5  và 24.11 Ta thấy 2 là thừa số nguyên tố chung. Số mũ nhỏ nhất của 2 là 2 nên ƯCLN cần tìm là 22 = 4

Bài 2.33 trang 48 Toán lớp 6 Tập 1:

Cho hai số a = 72 và b = 96 a) Phân tích a và b ra thừa số nguyên tố; b) Tìm ƯCLN(a, b), rồi tìm ƯC(a, b). Lời giải: a) Phân tích a và b ra thừa số nguyên tố Ta có:  Do đó: a = 72 = 23.32. Lại có:  Vậy  b = 96 = 25.3. b) Ta thấy 2 và 3 là các thừa số chung của 70 và 96. Số mũ nhỏ nhất của 2 là 3 và số mũ nhỏ nhất của 3 là 1 nên ƯCLN(72; 96) = 23 . 3 = 24 ƯC(a, b) = Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}.

Bài 2.34 trang 48 Toán lớp 6 Tập 1:

Bài 2.35 trang 48 Toán lớp 6 Tập 1: 

Hãy cho hai ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số. Lời giải: Có nhiều ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số, chẳng hạn ta có hai ví dụ sau: +) 6 và 35 Vì 6 = 2.3; 35 = 5.7. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 6 chia hết cho 2 nên 6 là hợp số; 35 chia hết cho 5 nên 35 là hợp số. +) 10 và 27 Vì 10 = 2.5; 27 = 33. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 10 chia hết cho 2 nên 10 là hợp số; 27 chia hết cho 3 nên 27 là hợp số. Lời giải BÀI 11: ƯỚC CHUNG ƯỚC CHUNG LỚN NHẤT soạn Toán 6 Trang 44 45 46 47 48 Kết nối tri thức với cuộc sống

Đừng Đọc!!!

Quý thầy, cô và bạn đọc có thể chia sẻ tài liệu trên CAPTOC.vn bằng cách gửi về:

Email: hotro@captoc.vn

Bình luận

Tài liệu liên quan

Tài liệu được xem nhiều nhất

Đề ôn thi tốt nghiệp môn Sinh 2024 chuẩn cấu trúc đề minh họa
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Lào Cai
Trắc nghiệm GTLN và GTNN của hàm số - Đáp án chi tiết WORD, PDF
Đề cuối kỳ 2 Toán 12 năm 2022 – 2023 trường THPT Đức Hòa – Long An
Bài tập phương pháp toạ độ trong mặt phẳng Toán 10 Cánh Diều
Đề thi thử tốt nghiệp THPT môn Vật Lí 2024 có đáp án - Đề 3
Đề cương ôn tập học kỳ 2 môn Vật Lý 12 năm học 2023-2024
210 câu trắc nghiệm Cacbonhidrat theo từng mức độ

210 câu trắc nghiệm Cacbonhidrat theo từng mức độ

298 View

Sổ tay Toán học 12

Sổ tay Toán học 12

367 View

Đề thi thử Toán vào 10 năm 2023 – 2024 trường THCS Nguyễn Hữu Thái – Hà Tĩnh
Phương pháp giải hiện tượng quang điện ngoài

Phương pháp giải hiện tượng quang điện ngoài

359 View

1000 câu trắc nghiệm Địa lí 12 theo từng mức độ

1000 câu trắc nghiệm Địa lí 12 theo từng mức độ

501 View